metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

µ-(4,4'-Bipyridine)-N:N'-bis[bis-(pyrrolidinedithiocarboxylato-S,S')zinc(II)]

Xiao-Feng Chen,^a* Shu-Hua Liu,^a Xu-Hui Zhu,^a Jagadese J. Vittal,^b Goek-Kheng Tan^b and Xiao-Zeng You^a

^aCoordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Chemistry, National University of Singapore, Lower Kent Ridge Road, Singapore 119260 Correspondence e-mail: xfchen@jlonline.com

Received 5 May 1999 Accepted 6 October 1999

The title compound, $[Zn_2(C_5H_8NS_2)_4(C_{10}H_8N_2)]$, consists of two bis(pyrrolidinedithiocarboxylato)zinc molecules bridged by a 4,4'-bipyridine molecule, and has a 222 symmetry. Each Zn atom forms a five-coordinate pseudo-square-based pyramidal arrangement, with four Zn-S interactions and one Zn-N interaction; the Zn-N distance is 2.085 (3) Å and the Zn-S distances are in the range 2.3319 (8)–2.6290 (9) Å.

Comment

Recently, bis(dialkyldithiocarbamates) of zinc and cadmium have found use as single-molecule precursors in the growth of Group II–Group VI materials by low-pressure metal–organic chemical vapour deposition (Lp–MOCVD), leading to a renewed interest in their chemistry and further crystallographic investigations (O'Brien *et al.*, 1996). In general, the formation of the adduct breaks the parent dimeric dithiocarbamate into a monomeric species (Airolidi *et al.*, 1990;

Zeng *et al.*, 1994). However, this is not the case for the N, N, N', N'-tetramethylethylenediamine (TMED) adduct of the asymmetric dithiocarbamate species [Zn(S₂CNMeⁱPr)₂], which was reported as consisting of two bis(*N*-methylisopropyldithiocarbamato)zinc molecules bridged by a TMED molecule (Malik *et al.*, 1997). We report here the crystal structure of μ -(4,4'-bipyridine)-N:N'-bis[bis(pyrrolidinedi-thiocarboxylato-S,S')zinc(II)], (I), composed of two bis-

View of the title compound with the atomic numbering scheme and 30% probability ellipsoids.

(pyrrolidinedithiocarboxylato)zinc(II) moieties bridged by a 4,4'-bipyridine (4,4'-bipy) molecule.

Compound (I) (Fig. 1) has a 222 symmetry and each Zn atom has a distorted rectangular pyramidal geometry. Zn atoms are linked to two bidentate $-S_2CNR_2$ ligands in the basal plane and are bridged by a 4,4'-bipy ligand at the apex. The 4,4'-bipy ligand is not planar and the dihedral angle between the two pyridine rings is 38.6°. There are two short [2.3319(8) Å] and two long Zn-S bond lengths [2.6290 (9) Å], which are similar to the distances found in $[Zn(Me^{i}PrNCS_{2})_{2}]_{2}$ ·TMED (Malik *et al.*, 1997) of 2.349 (2) and 2.5640 (7)/2.6103 (7) Å, respectively. The short Zn-Sbonds are associated with the longer S-C distances. This indicates that the dithiocarbamate ligand is asymmetrically linked to zinc. The Zn-N bond length [2.085 (3) Å] is shorter than that of $[Zn(Me^{i}PrNCS_{2})_{2}]_{2}$ ·TMED [2.137 (5) Å] and longer than that of [Zn(MeⁱPrNCS₂)]·pyridine [2.069 (2) Å; Malik et al., 1997]. This difference may be attributed to the very different steric characters of the N-containing bridged ligands.

Experimental

Bis(pyrrolidinedithiocarboxylate)zinc (Wang & Marshall, 1974) and 4,4'-bipyridine were dissolved in dimethylformamide (DMF) and refluxed for 1 h. The yellow microcrystals which formed were collected by concentrating the DMF solution. Single crystals suitable for X-ray analysis were obtained by recrystallization from CH₃CN.

Crystal data

$[Zn_2(C_5H_8NS_2)_4(C_{10}H_8N_2)]$
$M_r = 871.90$
Orthorhombic, Fddd
a = 11.7643 (2) Å
b = 19.9965 (3) Å
c = 32.9889 (3) Å
V = 7760.5 (2) Å ³
Z = 8
$D_{\rm x} = 1.493 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 6152 reflections $\theta = 2.10-29.37^{\circ}$ $\mu = 1.70 \text{ mm}^{-1}$ T = 293 (2) K Cut hexagonal block, yellow $0.20 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Siemens SMART CCD diffract- ometer ω scans Absorption correction: empirical (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.644, T_{max} = 0.737$ 11 821 measured reflections	2497 independent reflections 2009 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 29.37^{\circ}$ $h = -15 \rightarrow 8$ $k = -27 \rightarrow 27$ $l = -45 \rightarrow 43$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 18.0531P]$

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $R[F^{-} > 2\sigma(F^{-})] = 0.046$ $wR(F^{2}) = 0.121$ S = 1.0782497 reflections 115 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.085 (3)	N2-C5	1.476 (4)
Zn1-S1	2.3319 (8)	C1-C2	1.369 (4)
Zn1-S2	2.6290 (9)	C2-C3	1.392 (3)
S1-C4	1.729 (3)	C3-C3 ⁱ	1.479 (7)
S2-C4	1.714 (3)	C5-C6	1.502 (5)
N1-C1	1.340 (3)	C6-C7	1.437 (10)
N2-C4	1.318 (4)	C7-C8	1.535 (9)
N2-C8	1.474 (4)		
N1-Zn1-S1	107.23 (3)	S1-Zn1-S2	73.10 (3)
S1-Zn1-S1 ⁱⁱ	145.53 (5)	S1 ⁱⁱ -Zn1-S2	103.28 (3)
N1-Zn1-S2	95.92 (2)	S2 ⁱⁱ -Zn1-S2	168.17 (5)

Symmetry codes: (i) $\frac{3}{4} - x$, y, $-\frac{1}{4} - z$; (ii) $\frac{3}{4} - x$, $\frac{3}{4} - y$, z.

The C7 atom was found to be disordered and was refined as C7 and C7A with occupancies of 0.55 and 0.45, respectively.

Data collection: *SMART* (Siemens, 1996*a*); cell refinement: *SAINT* (Siemens, 1996*a*); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXTL* (Siemens, 1996*b*); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the State Ministry of Science and Technology, and the National Natural Science Foundation of China for a major key research project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1483). Services for accessing these data are described at the back of the journal.

References

- Airolidi, C., de Oliveia, S. F., Ruggiero, S. G. & Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103–108.
- Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). *Inorg. Chem.* 36, 1263–1264.
- O'Brien, P., John, R. W., Ian, M. W., Majid, M. & Lars, H. (1996). J. Chem. Soc. Dalton Trans. pp. 2491–2496.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1996). SADABS. Siemens Area Detector Absorption Correction Software. University of Göttingen, Germany.

Siemens (1996a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, J. & Marshall, W. D. (1974). Anal. Chem. 66, 1658-1663.

Zeng, D., Hampden-Smith, M. J., Alam, T. M. & Rheingold, A. L. (1994). Polyhedron, 13, 2715–2730.