Crystal Structure

Communications

ISSN 0108-2701

μ-(4,4'-Bipyridine)- $N: N^{\prime}$-bis[bis-(pyrrolidinedithiocarboxylato-S, S^{\prime})zinc(II)]

Xiao-Feng Chen, ${ }^{\text {a* }}$ Shu-Hua Liu, ${ }^{\text {a }}$ Xu-Hui Zhu, ${ }^{\text {a }}$ Jagadese J. Vittal, ${ }^{\text {b }}$ Goek-Kheng Tan ${ }^{\text {b }}$ and Xiao-Zeng You ${ }^{\text {a }}$

${ }^{\text {a }}$ Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, Singapore 119260
Correspondence e-mail: xfchen@jlonline.com

Received 5 May 1999
Accepted 6 October 1999
The title compound, $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NS}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, consists of two bis(pyrrolidinedithiocarboxylato)zinc molecules bridged by a $4,4^{\prime}$-bipyridine molecule, and has a 222 symmetry. Each Zn atom forms a five-coordinate pseudo-square-based pyramidal arrangement, with four $\mathrm{Zn}-\mathrm{S}$ interactions and one $\mathrm{Zn}-\mathrm{N}$ interaction; the $\mathrm{Zn}-\mathrm{N}$ distance is 2.085 (3) \AA and the $\mathrm{Zn}-\mathrm{S}$ distances are in the range 2.3319 (8)-2.6290 (9) \AA.

Comment

Recently, bis(dialkyldithiocarbamates) of zinc and cadmium have found use as single-molecule precursors in the growth of Group II-Group VI materials by low-pressure metal-organic chemical vapour deposition (Lp-MOCVD), leading to a renewed interest in their chemistry and further crystallographic investigations (O'Brien et al., 1996). In general, the formation of the adduct breaks the parent dimeric dithiocarbamate into a monomeric species (Airolidi et al., 1990;

Zeng et al., 1994). However, this is not the case for the $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMED) adduct of the asymmetric dithiocarbamate species $\left[\mathrm{Zn}\left(\mathrm{S}_{2} \mathrm{CNMe}{ }^{i} \mathrm{Pr}\right)_{2}\right]$, which was reported as consisting of two bis(N-methylisopropyldithiocarbamato)zinc molecules bridged by a TMED molecule (Malik et al., 1997). We report here the crystal structure of μ-(4,4'-bipyridine)- N : N^{\prime}-bis[bis(pyrrolidinedi-thiocarboxylato-S, S^{\prime})zinc(II)], (I), composed of two bis-

Figure 1
View of the title compound with the atomic numbering scheme and 30% probability ellipsoids.
(pyrrolidinedithiocarboxylato)zinc(II) moieties bridged by a 4,4'-bipyridine (4,4'-bipy) molecule.

Compound (I) (Fig. 1) has a 222 symmetry and each Zn atom has a distorted rectangular pyramidal geometry. Zn atoms are linked to two bidentate $-\mathrm{S}_{2} \mathrm{CN} R_{2}$ ligands in the basal plane and are bridged by a $4,4^{\prime}$-bipy ligand at the apex. The $4,4^{\prime}$-bipy ligand is not planar and the dihedral angle between the two pyridine rings is 38.6°. There are two short [2.3319 (8) \AA] and two long $\mathrm{Zn}-\mathrm{S}$ bond lengths [2.6290 (9) Å], which are similar to the distances found in $\left[\mathrm{Zn}\left(\mathrm{Me}^{i} \mathrm{PrNCS}_{2}\right)_{2}\right]_{2} \cdot$ TMED (Malik et al., 1997) of 2.349 (2) and $2.5640(7) / 2.6103$ (7) \AA, respectively. The short $\mathrm{Zn}-\mathrm{S}$ bonds are associated with the longer $\mathrm{S}-\mathrm{C}$ distances. This indicates that the dithiocarbamate ligand is asymmetrically linked to zinc. The $\mathrm{Zn}-\mathrm{N}$ bond length $[2.085$ (3) \AA] is shorter than that of $\left[\mathrm{Zn}\left(\mathrm{Me}^{i} \mathrm{PrNCS}_{2}\right)_{2}\right]_{2} \cdot$ TMED $[2.137(5) \AA]$ and longer than that of $\left[\mathrm{Zn}\left(\mathrm{Me}^{i} \operatorname{PrNCS}_{2}\right)\right]$.pyridine $[2.069(2) \AA$; Malik et al., 1997]. This difference may be attributed to the very different steric characters of the N -containing bridged ligands.

Experimental

Bis(pyrrolidinedithiocarboxylate)zinc (Wang \& Marshall, 1974) and 4,4'-bipyridine were dissolved in dimethylformamide (DMF) and refluxed for 1 h . The yellow microcrystals which formed were collected by concentrating the DMF solution. Single crystals suitable for X-ray analysis were obtained by recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$.

Crystal data

$\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NS}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$	Mo $K \alpha$ radiation
$M_{r}=871.90$	Cell parameters from 6152
Orthorhombic, $F d d d$	reflections
$a=11.7643(2) \AA$	$\theta=2.10-29.37^{\circ}$
$b=19.9965(3) \AA$	$\mu=1.70 \mathrm{~mm}^{-1}$
$c=32.9889(3) \AA$	$T=293(2) \mathrm{K}$
$V=7760.5(2) \AA \AA^{3}$	Cut hexagonal block, yellow
$Z=8$	$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$
$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$	

$\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NS}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
Orthorhombic, Fddd
$a=11.7643$ (2) £
$b=19.9965$ (3) A
$=32.9889$ (3) A
$Z=8$
$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 6152
reflections
$\theta=2.10-29.37^{\circ}$
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Siemens SMART CCD diffractometer

2497 independent reflections 2009 reflections with $I>2 \sigma(I)$
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.644, T_{\text {max }}=0.737$
11821 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.121$
$S=1.078$
2497 reflections
115 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.085(3)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.476(4)$
$\mathrm{Zn} 1-\mathrm{S} 1$	$2.3319(8)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.369(4)$
$\mathrm{Zn} 1-\mathrm{S} 2$	$2.6290(9)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.392(3)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.729(3)$	$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.479(7)$
$\mathrm{S} 2-\mathrm{C} 4$	$1.714(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.502(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.340(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.437(10)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.318(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.535(9)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.474(4)$		
			$73.10(3)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{S} 1$	$107.23(3)$	$\mathrm{S} 1-\mathrm{Zn} 1-\mathrm{S} 2$	$103.28(3)$
$\mathrm{S} 1-\mathrm{Zn} 1-\mathrm{S} 1^{\mathrm{ii}}$	$145.53(5)$	$\mathrm{S}^{\mathrm{iii}}-\mathrm{Zn} 1-\mathrm{S} 2$	$168.17(5)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{S} 2$	$95.92(2)$	$\mathrm{S}^{\mathrm{ii}}-\mathrm{Zn} 1-\mathrm{S} 2$	

Symmetry codes: (i) $\frac{3}{4}-x, y,-\frac{1}{4}-z$; (ii) $\frac{3}{4}-x, \frac{3}{4}-y, z$.

The C 7 atom was found to be disordered and was refined as C 7 and $\mathrm{C} 7 A$ with occupancies of 0.55 and 0.45 , respectively.

Data collection: SMART (Siemens, 1996a); cell refinement: SAINT (Siemens, 1996a); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Siemens, 1996b); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors would like to thank the State Ministry of Science and Technology, and the National Natural Science Foundation of China for a major key research project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1483). Services for accessing these data are described at the back of the journal.

References

Airolidi, C., de Oliveia, S. F., Ruggiero, S. G. \& Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103-108.
Malik, M. A., Motevalli, M., O'Brien, P. \& Walsh, J. R. (1997). Inorg. Chem. 36, 1263-1264.
O'Brien, P., John, R. W., Ian, M. W., Majid, M. \& Lars, H. (1996). J. Chem. Soc. Dalton Trans. pp. 2491-2496.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. Siemens Area Detector Absorption Correction Software. University of Göttingen, Germany.
Siemens (1996a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, J. \& Marshall, W. D. (1974). Anal. Chem. 66, 1658-1663.
Zeng, D., Hampden-Smith, M. J., Alam, T. M. \& Rheingold, A. L. (1994). Polyhedron, 13, 2715-2730.

